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PURPOSE. To describe and evaluate the performance of an
algorithm that automatically classifies images with pathologic
features commonly found in diabetic retinopathy (DR) and
age-related macular degeneration (AMD).

METHODS. Retinal digital photographs (N � 2247) of three
fields of view (FOV) were obtained of the eyes of 822 patients
at two centers: The Retina Institute of South Texas (RIST, San
Antonio, TX) and The University of Texas Health Science
Center San Antonio (UTHSCSA). Ground truth was provided
for the presence of pathologic conditions, including microan-
eurysms, hemorrhages, exudates, neovascularization in the op-
tic disc and elsewhere, drusen, abnormal pigmentation, and
geographic atrophy. The algorithm was used to report on the
presence or absence of disease. A detection threshold was
applied to obtain different values of sensitivity and specificity
with respect to ground truth and to construct a receiver oper-
ating characteristic (ROC) curve.

RESULTS. The system achieved an average area under the ROC
curve (AUC) of 0.89 for detection of DR and of 0.92 for
detection of sight-threatening DR (STDR). With a fixed speci-
ficity of 0.50, the system’s sensitivity ranged from 0.92 for all
DR cases to 1.00 for clinically significant macular edema
(CSME).

CONCLUSIONS. A computer-aided algorithm was trained to detect
different types of pathologic retinal conditions. The cases of
hard exudates within 1 disc diameter (DD) of the fovea (sur-
rogate for CSME) were detected with very high accuracy (sen-
sitivity � 1, specificity � 0.50), whereas mild nonproliferative
DR was the most challenging condition (sensitivity� 0.92,
specificity � 0.50). The algorithm was also tested on images
with signs of AMD, achieving a performance of AUC of 0.84

(sensitivity � 0.94, specificity � 0.50). (Invest Ophthalmol Vis
Sci. 2011;52:5862–5871) DOI:10.1167/iovs.10-7075

Diabetic retinopathy (DR) is a disease that affects up to 80%
of diabetics around the world. It is one of the leading

causes of blindness in the United States, and it is the second
leading cause of blindness in the Western world.1 On the other
hand, age-related macular degeneration (AMD) is the leading
cause of blindness in people older than 65 years. More than
1.75 million people have AMD in the United States, and this
number is expected to increase to 3 million by 2020.2 Many
studies have demonstrated that early treatment can reduce the
amount of advanced DR and AMD cases mitigating the medical
and economic impacts of the disease.3

Accurate, early detection of eye diseases is important be-
cause of its potential for reducing the number of cases of
blindness around the world. Retinal photography for DR has
been promoted for decades for both the screening of the
disease and in landmark clinical research studies, such as the
Early Treatment Diabetic Retinopathy Study (ETDRS).4 Al-
though the ETDRS standard fields of view (FOVs) may be
regarded as the current gold standard5 for diagnosis of retinal
disease, studies have demonstrated that the information pro-
vided by two or three of these fields is sufficiently comprehen-
sive to provide an accurate diagnosis of diabetic retinopathy
and more than sufficient for screening.6

In recent years, several research centers have presented
systems to detect pathologic conditions in retinas. Some nota-
ble ones have been presented by Larsen et al.,7 Niemeijer et
al.,8 Chaum et al.,9 and Fleming et al.3,10 However, these
approaches must apply specialized algorithms to detect a spe-
cific type of lesion in the retina. To detect multiple lesions, the
previous systems generally implement more than one of these
algorithms. Furthermore, some of these studies evaluate their
algorithms on a single dataset, which avoids the problems,
such as resolution, that are associated with the differences in
fundus imaging devices.

These methodologies primarily employ a “bottom-up” ap-
proach in which the accurate segmentation of all the lesions in
the retina is the basis for correct determination. A disadvantage
of bottom-up approaches is that they rely on the accurate
segmentation of all the lesions in the retina to measure perfor-
mance. Yet, the development of specialized segmentation
methods can be challenging. In such cases, lesion detection
can suffer from the lack of effective segmentation methods.
This is particularly problematic for advanced stages of DR, such
as neovascularization.

A top-down approach, such as the one used in our study,
does not depend on the segmentation of specific lesions. Thus,
top-down methods can detect abnormalities not explicitly used
in training.11 Our objective was to show that this approach is
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a suitable implementation for eye disease detection with spe-
cific consideration to DR and AMD.

METHODS

Data Description

The retrospective images used to test our algorithm were obtained
from the Retina Institute of South Texas (RIST, San Antonio, TX) and
the University of Texas Health Science Center in San Antonio
(UTHSCSA). Fundus images from 822 patients (378 and 444 patients
from RIST and UTHSCSA, respectively) were collected retrospec-
tively for this study. The use of the images was in accordance with
the Declaration of Helsinki. The images were taken with a TRC
50EX camera (Topcon, Tokyo, Japan) at RIST and a CF-60uv camera
(Canon, Tokyo, Japan) at UTHSCSA. Both centers captured 45°
mydriatic images with no compression. The size of the RIST images
was 1888 � 2224 pixels, and the size of the UTHSCSA images was
2048 � 2392 pixels. Both databases were collected in the south
Texas area where, according to the U.S. Bureau of the Census, in
2009 the ethnicity distribution for this area was 58.3% Hispanic,
31.3% white (non-Hispanic), and 7.8% Afro-American. For the data-
base provided by the UTHSCSA, no information about the age or sex
of the patients was provided. In the case of the RIST database, the
data were collected from July 2005 to February 2010. The distribu-
tion of patients was 50.8% female and 49.2% male. Ages were also
obtained and were distributed as follows: 1.1% aged 0 to 24 years;
6.6%, 25 to 44 years; 26%, 45 to 64 years; and 66.3% d 65 years or
older. All the images that presented with cataracts at their early
stage, retinal sheen, or lighting artifacts were considered for this
study. We excluded retinal images presenting advanced stages of
cataracts, corneal and vitreous opacities, asteroid hyalosis, and
significant eye lashes or eye lid artifacts. The number of images
excluded in this study was 67, or 5.8% of the RIST database, and 57,
or 5.2% of the UTHSCSA database.

Figure 1 shows examples of images from the three FOVs found
in both databases. Figure 1a is centered on the optic disc (FOV1),
Figure 1b is centered on the fovea (FOV2), and Figure 1c is focused
on the superior temporal region of the retina (FOV3). Each image
was graded independently into the following categories: normal,
nonproliferative DR (NPDR), sight-threatening DR (STDR), and
maculopathy. Table 1 shows the distribution of each subject’s eye in
these categories. In addition, the 10 pathologic retinal conditions
specified by the graders are shown in Tables 2 and 3. Seven were

related to DR: microaneurysms, hemorrhages, exudates less than 1
disc diameter (DD) away from the fovea, exudates elsewhere, in-
traretinal microvascular abnormalities (IRMA), neovascularization
on the disc (NVD), and neovascularization elsewhere (NVE). The
three pathologies related to AMD were drusen, abnormal pigmen-
tation, and geographic atrophy (GA).

The graders assessed the image quality according to the criterion of
clarity of vessels around the macula.12 With this criterion, the quality
of the images was classified as excellent, good, fair, or inadequate.
Using the criterion, we removed 193 images, or 16.7% of the RIST
database, and 111 images, or 10.2% of the UTHSCSA database. Figure
2 shows examples of images that were not considered for the study
because of inadequate quality.

Image Processing

The detection process started with the extraction of features from the
retinal images (see Fig. 3 for the complete procedure). Our algorithm
uses a technique called amplitude-modulation frequency-modulation
(AM-FM)11–14 to define the features and characterize normal and patho-
logic structures based on their pixel intensity, size, and geometry at
different spatial and spectral scales. Please refer to Appendix A for a
more detailed explanation of the AM-FM approach.

Since the result of AM-FM processing produces some features that
may not be necessary for the accurate classification of images, we used
informative outputs of a sequential backward elimination process in
which the contributions of each feature were measured, and the ones
that did not improve the classification performance were eliminated
from our set. This process was applied independently for each of the
pathologic features of interest, to obtain a better characterization of
them.

To extract information from an image, AM-FM decomposes the
images into different representations that reflect the intensity, geom-
etry, and texture of the structures in the image. In addition to obtaining

FIGURE 1. (a–c) FOVs 1, 2, and 3 of
a normal retina from the RIST data-
base; (d–f) FOVs 1, 2, and 3 of an
abnormal retina from the UTHSCSA
database.

TABLE 1. Distribution of the RIST and the UTHSCSA Databases

Database Patients
Normal

Eyes
NPDR
Eyes

STDR
Eyes Maculopathy

RIST 378 64 486 158 174
UTHSCSA 444 116 418 292 207

Data are the number in each category.
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this information per image, filters were applied to obtain image rep-
resentations in different bands of frequencies. For example, if a medi-
um- or high-pass filter is applied to an image, the smaller retinal
structures (e.g., microaneurysms, dot-blot hemorrhages, and exudates)
microaneurysms are enhanced. This effect can be observed in Figures
4b and 4c, where the different types of red lesions, exudates, and
thinner vessels present in the retinal region are captured. On the other
hand, if a low-pass filter is applied, then larger structures are captured
such as wider vessels, as shown in Figure 4e. By taking the difference
of the two lowest scale representations, smaller vessels can also be
captured, as seen in Figure 4f. These two ways of processing (AM-FM
image representations and output of the filters) revealed more robust
signatures of the different pathologies to be characterized. Thus, if we
combine the representations of the different scales, we can obtain
signatures for each structure, which allows us to detect and uniquely
classify them.

To facilitate the characterization of early cases of retinopathy in
which only a few small abnormalities are found, our process divides
the images into regions of interest (ROIs). A sensitivity analysis of the
size of the ROIs found that square regions of 140 � 140 pixels were
adequate to represent features of small structures that can appear in
the retina, such as microaneurysms or exudates. A total of 202 ROIs
were necessary to cover the entire image. For classification, a feature
vector was created with a concatenation of the following seven fea-
tures from each region: (1) the first four statistical moments (mean,
standard deviation, skewness, and kurtosis) and (2) the histogram
percentiles (25th, 50th, and 75th).

A k-means clustering approach was performed to group the ROIs
with similar features, by using the Euclidean distance between fea-
tures. In this way, we avoid the time-consuming process of grading
each region by use of an unsupervised algorithm. The resulting clusters
become the representative feature vector per image. Once the feature
vectors are extracted, we use them in the classification module (bot-
tom right block in Fig. 3). This module used a partial least-squares (PLS)
regression classifier to find the relevant features that classify images as
normal or abnormal according to ground truth.

Experimental Design

The following paragraphs describe the experiments performed to assess
the accuracy of the system in detecting the retinal pathologies listed in
Tables 2 and 3. These pathologies are characteristic of either DR or AMD.

In this section, we describe in detail the approaches taken for assessing
the presence of these diseases in the retinal photographs.

DR Classification. For DR-related cases, the performance of the
algorithm was measured by its ability to discriminate DR cases from
normal cases. To do this, we created a mathematical model of the
images by training the system on a subset of the data. This training set
produced a model to which the testing images were compared. If the
result of this comparison was greater than a predefined threshold, the
image was considered abnormal (or suspect for DR). Images that fell
below the threshold were labeled as normal.

In addition, the algorithm was tested separately on sight-threaten-
ing DR (STDR) cases, where STDR was defined as an image showing
NVE, CSME, or NVD. In the following subsections, we detail the special
properties that make the AM-FM representations ideally suited for the

detection of CSME and NVD.
Clinically Significant Macular Edema. Previously, investiga-

tors have found an association between hard exudates near the fovea and
CSME.15,16 Although hard exudates are one of the most common findings
in macular edema, their presence is not always indicative of edema.
Previous research has demonstrated that the sensitivity of exudates in
predicting macular edema is 93.9%.17 Finding exudates near the fovea
does not unequivocally ascertain edema’s presence or absence. Our goal
is simply to identify at-risk patients based on the presence of hard exu-
dates. For the purposes of this study, the presence of exudates within 1
DD of the fovea was considered to be a surrogate for CSME.18 Figure 5
shows an example of how AM-FM highlights the presence of exudates
while minimizing interference from blood vessels. In this figure, we see a
normal retina (Fig. 5a) and one containing exudates within 1 DD of the
fovea (Fig. 5b). Fig 5c shows the AM-FM decomposition of the normal
retina for the high frequencies. The representation eliminates all the
vessels from the image and shows only a dark background. In contrast, at
the same high frequencies, the AM-FM decomposition for the abnormal

retina clearly highlights the exudates while eliminating the vessels.
Neovascularization on the Optic Disc. NVD is defined as the

growth of new vessels within 1 DD of the center of the optic disc.18 In
Figure 6, we show how NVD is represented by AM-FM. Note that, when
medium frequencies are applied (Figs. 6b, 6e), the vessels on the optic
disc and NVD are highlighted, whereas the NVD is best represented by the
high frequencies, as shown in Figure 6f. It is these combinations of AM-FM
frequencies that were used by our classifier to determine the presence or
absence of an abnormality. The noise present in Figures 6c and 6f is due
to a bright nerve fiber layer, but its AM-FM representation has less intensity
amplitude than the abnormal vessels.

AMD Classification. In addition to testing the images for the
presence of DR, three different pathologies related to AMD were analyzed:
drusen, abnormal pigmentation, and GA. Figure 7 shows an example of a
retinal image with drusen and one of its corresponding AM-FM image
representations. As seen in this example, drusen are noticeably high-
lighted by AM-FM. We then tested the system in the following scenarios:

TABLE 2. Distribution of DR Conditions among the RIST and UTHSCSA Images

Presence of
Lesion Microaneurysms Hemorrhages

Exudates
Fovea

Exudates
Elsewhere IRMA NVE NVD

RIST images, n 378 511 174 248 80 30 58
UTHSCSA images, n 274 316 207 284 70 59 118

TABLE 3. Distribution of AMD Conditions among the RIST and
UTHSCSA Images

Presence of
Lesion Drusen Pigmentation GA

RIST images, n 343 345 154
UTHSCSA images, n 188 86 54

FIGURE 2. Examples of inadequate
quality images that were not used by
our algorithm.
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normal versus drusen, normal versus abnormal pigmentation, normal
versus GA, and normal versus all AMD pathologies. For the drusen exper-
iment, all stages of the presence of drusen where categorized in the same
group without distinction of severity (e.g., a few isolated drusen versus
large, confluent drusen).

RESULTS

Interreader Variability

To analyze the consistency of the grading criteria, a ran-
domly selected subset of 10% of the data from RIST and

UTHSCSA was given to two graders: an optometrist (grader
2) and an ophthalmologist (grader 3). This random selection
process has been used by others such as Abràmoff et al.19

who used 1.25% of their data (�40,000 images) to compare
rates from three retinal specialists. Our new subset, the
database described in Tables 2 and 3, was read by the three
graders according to the original categories. The agreement
between graders was calculated using the � statistic. We
calculated the � statistic for three exclusive classes: normal
retinas, abnormal retinas, and sight-threatening eye diseases,
as reported in Table 4.

FIGURE 3. Procedure for classifying the retinal images. First, the green channel of the images is selected. Then, the images are processed by AM-FM
to decompose them in their AM-FM estimates. Depending on the test, the images are subdivided in ROIs, the macula or the optic disc region is
selected, or the entire image without the optic disc is entered into the block of the feature extraction. Features are obtained for each observation.
If the image is represented in ROIs, the k-means method is applied; otherwise, the feature selection and the two-step PLS classifier is applied, to
obtain the estimated class for each image.

FIGURE 4. Structures in the retina
captured by the AM-FM estimates us-
ing high values of the IA (blue). (a)
Region of a retinal image with pathol-
ogies; (b) image representation using
medium frequencies, which captures
dark and bright lesions as well as
vasculature; (c) image representation
using high frequencies. Note that
this image captures most of the
bright lesions; (d) region of a retinal
image with normal vessel structure;
(e) image representation using a very
low frequency filter; (f) Image repre-
sentation of (d) obtained by taking
the difference between the very low
and the ultralow frequency scales, in
this image the thinner vessels are bet-
ter represented.
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FIGURE 5. Examples of structures
capture by the AM-FM estimates us-
ing high values of the IA in macular
regions (the circle encloses an area
equal to 1 DD from the fovea). (a)
Normal macula, (b) macula with
hard exudates, (c) normal retina at
high frequency, and (d) retina with
exudates at high frequency.

FIGURE 6. Examples of structures
captured by the AM-FM estimates us-
ing high values of the IA for two
different optic discs. (a) Normal op-
tic disc, (d) NVD, (b, e) IA of the
retinas in (a) and (d) at medium fre-
quencies, (c, f) images of (a) and (d)
at high frequencies.
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Automatic Detection Results

Cross validation was used to assess the performance of the
algorithm. The ratio between training and testing data was
selected so that 70% of the data were used for training and
30% were used for testing. A more robust classification
model was estimated by randomly selecting the images in
the training and testing sets. The average of 20 runs is
presented in Tables 5 and 6. This procedure minimizes the
possible bias incurred if the training and testing sets are
fixed.20 To compare our results with recently published
algorithms, we fixed the specificity to two values: 0.50 and
0.60. These specificities have been used to report sensitivity

in two large studies.3,9 Figure 8 shows six ROC curves, three
for each database for the following experiments: normal
versus NPDR, normal versus STDR, and normal versus DR.

DISCUSSION

Interreader Variability

Table 4 shows the � values obtained to measure the interreader
variability. Based on the Landis and Koch interpretation of �
values, we obtained substantial agreement (� values higher
than 0.6) between all three graders. Further analysis was per-
formed for grading the different sight-threatening categories
obtaining � values of 0.71 and 0.60 for CSME and NVD, respec-
tively, whereas for the NVE and IRMA cases, a � value of 0.55
(moderate agreement) was obtained. When we analyzed the
differences between graders for this last category, we noted
that most of the disagreements were present in the detection
of IRMA. An illustration of this is shown in Figure 9. The two
images shown in Figures 9a and 9b were presented to the
graders again after applying local contrast enhancement, and
they agreed that the pathologic condition was present. Lower
image quality and blurring on some images are some of the
factors that contributed to the disagreement between graders.
In addition, we found that the presence of other pathologies
masked the presence of IRMA, as shown in Figure 9a.

Automatic Algorithm Results

Although different databases were used, the results for both
databases were consistent, in particular in patients with STDR.
For both databases, the best results were obtained for CSME
detection (hard exudates less than 1 DD away from the fovea),
and the worst were obtained for the detection of images with
drusen. It can be seen from Table 5 that in most of the
experiments, especially those for DR, the results of the UTH-
SCSA database (AUC � 0.89) were slightly better than those
from the RIST database (AUC � 0.81). One of the main factors
contributing to this difference was the higher quality images
found in the UTHSCSA database, as assessed by the expert
graders.

From Table 5 one can observe that the algorithm detected
CSME cases (i.e., hard exudates) with high sensitivity in the
range of (0.98–1.00) for 0.50 specificity. For detecting cases
with nonproliferative DR, hemorrhages, and microaneurysms,

FIGURE 7. (a) Retinal region with drusen. (b) Structures captured by
the AM-FM estimates using high values of the IA at low frequencies.

TABLE 4. Measurement of Agreement of Three Readers, According to
Cohen’s � for Normal Retinas, Abnormal Retinas, and Sight-
Threatening Eye Diseases

Comparison � Class � SE 95% CI

Grader 1 vs. grader 2 Unweighted 0.61 0.058 0.50–0.73
Linear weighted 0.69 0.048 0.60–0.79

Grader 1 vs. grader 3 Unweighted 0.74 0.056 0.67–0.85
Linear weighted 0.79 0.047 0.70–0.88

Grader 2 vs. grader 3 Unweighted 0.62 0.068 0.49–0.76
Linear weighted 0.69 0.059 0.57–0.80

FIGURE 8. ROC curves for the classification of DR, STDR, and NPDR. (a) RIST (b) UTHSCSA databases.
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the algorithm produced results comparable or better than
those reported in other large studies, such as Fleming et al.,10

who obtained sensitivity and specificity of 0.89 and 0.50 for
mild DR.

For detection of NVD, the algorithm achieved AUCs of 0.88
and 0.91. This result highlights one of the advantages of our
approach, as abnormal vessels can be discriminated from nor-
mal ones through analysis of the different image representa-
tions generated by AM-FM without the need for explicit seg-
mentation of the vasculature.

In the detection of NVE and IRMA, the performance of the
algorithm was 0.85 and 0.92 of sensitivity, respectively, for
0.50 specificity for both databases. We observed that one of
the factors that affected the algorithm was the ground truth.
When we compared the graders’ measurements for these pa-
thologies, we observed only moderate agreement (� � 0.55).
Furthermore, since ground truth is required to train the clas-
sifier, different graders can lead to different classification mod-
els due to inter-grader variability, even though the same set of
images is used. To the best of our knowledge, this is the first
published result on automatic detection of NVE.

One of the issues in testing our algorithm was the relatively
low proportion of cases of early-stage DR. The low number was
due to the nature of the centers from which the data were

collected, which tended to bias the samples to patients with
advanced stages of retinal disease. We have reported other
studies (Agurto C, et al. IOVS 2010;51:ARVO E-Abstract
1793)11 with the available online database MESSIDOR, but this
database was not useful in this study because it does not
contain enough samples of advanced cases. In the future, we
will train the system using a database that contains a greater
number of DR stages, ranging from normal to NPDR, PDR, and
maculopathy. In our experiments, we found that a robust
training set is the most important aspect when improving the
performance of the system. In fact, as the number of cases
analyzed by the algorithm increased, so did its accuracy, evi-
denced by the improvements found in comparison with the
results presented in our previous publications on the topic
(Agurto C, et al. IOVS 2010;51:ARVO E-Abstract 1793).11,21–24

An advantage of our top-down approach is clearly shown in
the detection of abnormalities related to AMD. Although the
system was not originally intended for those abnormalities, by
adding AMD cases to the training database, we were able to
detect these lesions with an accuracy of sensitivity/specificity
of 0.94/0.50 and 0.90/0.50 for the RIST and UTHSCSA data-
bases, respectively.

The results presented in this article are comparable with the
ones published by other investigators. For example, Niemeijer

FIGURE 9. Retinal images with IRMA.
The presence of IRMA was not de-
tected in the image in (a) by the first
grader or in the image in (b) by the
second grader. (c, d) Images (a) and
(b) with enhancement.

TABLE 5. Results of Performance Evaluation for DR Experiments and for Each Database

Diseases

RIST Database UTHSCSA Database

Images, n* AUC
Sens. for
Spec. 0.60

Sens. for
Spec. 0.50 Images, n* AUC

Sens. for
Spec. 0.60

Sens. for
Spec. 0.50

DR (419/144) 0.81 0.92 0.92 (437/136) 0.89 0.94 0.97
NPDR only (226/144) 0.77 0.83 0.88 (124/136) 0.85 0.90 0.95
STDR only (193/144) 0.92 0.95 0.98 (313/136) 0.92 0.96 0.96
CSME (68/44) 0.98 1 1 (147/93) 0.97 0.98 0.99
IRMA and NVE (95/144) 0.85 0.92 0.93 (137/136) 0.92 0.97 0.98
NVD (28/50) 0.88 0.90 0.92 (74/94) 0.91 0.95 0.95

* The first term in the parentheses refers to the abnormal cases, and the second term refers to the
number of normal cases used in each experiment. Sens., sensitivity; spec. specificity.
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et al.8 tested their algorithm in 15,000 patients and obtained an
AUC of 0.88 (sensitivity/specificity � 0.93/0.60) for the detec-
tion of diabetic retinopathy. In a study of 33,535 patients from
the Scottish National DR screening program, Fleming et al.10

reported detection of background retinopathy with 0.84 sen-
sitivity and 0.50 specificity and detection of maculopathy with
a sensitivity of 0.99 for the same level of specificity. Both of
those studies looked only at the detection of DR, in contrast to
our study, which added cases of AMD. Chaum et al.9 con-
ducted a study with 395 retinal images and reported a range of
sensitivity of 0.75 to 1.00 in the detection of AMD and sensi-
tivity of 0.75 to 0.947 in the detection of DR. In our approach,
by using the information provided in Tables 5 and 6, we report
detection of DR with sensitivity/specificity of 0.92/0.60 and
0.94/0.60, detection of CSME with sensitivity/specificity of
1/0.60 and 0.99/0.50, and detection of AMD with sensitivity/
specificity of 0.94/0.50 and 0.90/0.60 for the RIST and UTH-
SCSA databases, respectively. As can be observed, this ap-
proach demonstrates an algorithm that has the capability of
detecting the presence of pathologies associated with more
than one eye disease.

By observing the ROC curves (Fig. 8), the performance of
the algorithm on images from the RIST and UTHSCA databases
for the detection of STDR cases is very high, with sensitivities
of 0.96 and 0.98, respectively, for a fixed specificity of 0.50. If
we fix the specificity to 80%, the algorithm achieved sensitiv-
ities of 0.92 and 0.85 for the RIST and UTHSCSA databases,
respectively. For the other two experiments, NPDR and DR,
we achieved sensitivities in the range of (0.88–0.97) for 0.50
specificity.

In conclusion, this work presents a viable and efficient
means of characterizing different retinal abnormalities and
building binary classifiers for detection purposes. Although
automatic detection of DR has been studied by different groups
in the past decade, few studies have used a top-down approach
like the one we propose. In addition to that, to our knowledge,
automatic detection of STDR, as well as neovascularization,
pigmentation, and GA, has not been concurrently addressed at
the levels of performance presented in this work.
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8. Niemeijer M, Abràmoff MD, van Ginneken B. Information fusion
for diabetic retinopathy CAD in digital color fundus photographs.
IEEE Transactions on Medical Imaging. 2009;28(5)775–785.

9. Chaum E, Karnowski TP, Govindasamy VP, Abdelrahman M, Tobin
KW. Automated diagnosis of retinopathy by content-based image
retrieval. Retina 2008;28(10):1463–1477.

10. Fleming AD, Goatman KA, Philip S, Prescott GJ, Sharp PF, Olson
JA. Automated grading for diabetic retinopathy: a large-scale audit
using arbitration by clinical experts. Br J Ophthalmol. 2010;94:
1606–1610.

11. Agurto C, Murray V, Barriga, et al. Multiscale AM-FM methods for
diabetic retinopathy lesion detection. IEEE Trans Med Imag.
2010;29(2):502–512.

12. Fleming AD, Philip S, Goatman K, Olson J, Sharp P. Automated
assessment of diabetic retinal Image quality based on clarity and
field definition. Invest Ophthalmol Vis Sci. 2006;47:1120–1125.

13. Murray V, Rodriguez P, Pattichis MS. Multi-scale AM-FM Demodu-
lation and reconstruction methods with improved accuracy. IEEE
Trans Image Process. 2010;19(5):1138–1152.

14. Murray-Herrera VM. AM-FM Methods for Image and Video Pro-
cessing. PhD dissertation. Albuquerque, NM: University of New
Mexico; 2008.

15. Kinyoun J, Barton F, Fisher M, Hubbard L, Aiello L, Ferris F.
Detection of diabetic macular edema: ophthalmoscopy versus pho-
tography. Early Treatment Diabetic Retinopathy Study Report
Number 5, The ETDRS Research Group. Ophthalmology. 1989;96:
746–750.

16. Welty CJ, Agarwal A, Merin LM, Chomsky A. Monoscopic versus
stereoscopic photography in screening for clinically significant
macular edema. Ophthalmic Surg Lasers Imaging. 2006;37:524–
526.

17. Rudnisky CJ, Tennant MT, de Leon AR, Hinz BJ, Greve MD. Ben-
efits of stereopsis when identifying clinically significant macular
edema via tele-ophthalmology. Can J Ophthalmol. 2006;41(6):
727–732.

18. Jelinek HF, Cree MJ, eds. Automated Image Detection of Retinal
Pathology. Boca Raton: CRC Press; 2010.

19. Abràmoff MD, Niemeijer M, Russell SR. Automated detection of
diabetic retinopathy: barriers to translation into clinical practice.
Expert Rev Med Devices. 2010;7(2):287–296.

20. Chen W, Gallas BD. Training variability in the evaluation of auto-
mated classifiers. Proc. SPIE 2010;7624:762404.

21. Agurto C, Barriga S, Murray V, Pattichis M, Davis B, Soliz P. Effects
of image compression and degradation on an automated diabetic
retinopathy screening algorithm. Proc. SPIE 2010;7624:76240H.

TABLE 6. Results of Performance Evaluation for AMD Experiments and for Each Database

Diseases

Rist Database UTHSCSA Database

Images, n* AUC
Sens. for
Spec. 0.60

Sens. for
Spec. 0.50 Images, n* AUC

Sens. for
Spec. 0.60

Sens. for
Spec. 0.50

AMD only (248/144) 0.84 0.90 0.94 (259/136) 0.77 0.90 0.90
Drusen (91/98) 0.77 0.88 0.95 (143/136) 0.73 0.80 0.85
Pigmentation (55/98) 0.80 0.90 0.90 (61/136) 0.81 0.87 0.90
GA (100/98) 0.92 0.97 1 (76/136) 0.92 0.90 1

* The first term in the parentheses refers to the abnormal cases, and the second term refers to the
number of normal cases used in each experiment. Sens., sensitivity; spec. specificity.

IOVS, July 2011, Vol. 52, No. 8 Automatic Detection of Diabetic Retinopathy 5869

Downloaded from iovs.arvojournals.org on 02/07/2020



22. Agurto C, Murillo S, Murray V, et al. Detection and phenotyping of
retinal disease using AM-FM processing for feature extraction.
42nd IEEE Asilomar Conference on Signals, Systems and Com-
puters, October 26–29, 2008. 2008:659–663. Conference on.

23. Barriga ES, Murray V, Agurto C, et al. Multi-scale AM-FM for lesion
phenotyping on age-related macular degeneration. IEEE Interna-
tional Symposium on Computer-Based Medical Systems, August
2–5, 2009. 2009:1–5.

24. Barriga ES, Murray V, Agurto C, et al. Automatic system for diabetic
retinopathy screening based on AM-FM, partial least squares, and
support vector machines. IEEE Int Symposium on Biomedical
Imaging: From Nano to Macro, August 14–17, 2010; 2010:
1349–1352.

APPENDIX A

Amplitude-Modulation Frequency-Modulation and
Feature Extraction

The image representations from which the features are gener-
ated are obtained using a technique called AM-FM. To extract
information from an image, this technique decomposes the
green channel of the images into different representations
which reflect the intensity, geometry, and texture of the struc-
tures in the image. The AM-FM decomposition for an image I(x,
y) is given by:

I(x, y) ��
n�1

M

an(x, y) cos �n(x, y)

where M is the number of AM-FM components, an(x, y) de-
notes the instantaneous amplitude (IA) estimate, and �n(x, y)
denotes the instantaneous phase. Using the latter, two AM-FM
estimates are generated by extracting the magnitude and the
angle of its gradient. These estimates are called instantaneous
frequency magnitude (�IF�), and instantaneous frequency angle.

In addition to obtaining this information per image, filters are
applied to obtain image representations in different bands of
frequencies. For example, if a medium- or high-pass filter is ap-
plied to an image, the smaller retinal structures (e.g., MAs, dot-blot
hemorrhages, and exudates.) are enhanced. Using these two ways
of processing (AM-FM image representations and output of the
filters), more robust signatures of the different pathologies can be
characterized. At the end of this step, an image has 39 different
representations that characterize the different pathologies found
in the retina. A more extensive mathematical description of the
AM-FM technique can be found in a previously published paper.11

In this section we will describe conceptually the way AM-FM
represents two structures commonly found in DR images: retinal
vessels and round, dark lesions. The same analysis can be per-
formed for bright lesions, large hemorrhages, and abnormal ves-
sels, among other retinal features.

Figure A1 shows the way a horizontally oriented retinal
vessel is represented by AM-FM, and the resulting histograms
for the three different AM-FM estimates: IA, �IF�, and instanta-
neous frequency angle. The arrows in Figure A1a show the
direction in which the frequency change is happening, mean-
ing the way the pixel values are changing from dark (vessel) to
bright (retinal background). The pixels in the background will
have only slight changes in intensity, and therefore their fre-
quencies are close to 0. The only areas generating a frequency
response are those in the edge of the vessels, and they will
have a very distinctive �IF�, as represented in Figure A1b. The IA
will have high values for the areas with higher contrast, and
therefore, in the ideal case, the histogram of the IA will have
two distinctive peaks: one for the retinal background and one
for the edge of the vessels, as seen in Figure A1c. One of the
most distinctive features of vessel-like features is their direc-
tionality, which is captured by the IF angle. The direction of
change will be roughly the same for an elongated structure like
a vessel, and therefore the angle of the IF will generate a highly
peaked histogram, as seen in Figure A1d.

Figure A2 shows the histogram of the AM-FM representation
for a dark, round region such as MAs or dot-blot hemorrhages.

FIGURE A1. Conceptual AM-FM analysis for horizontally oriented
blood vessel edge: (a) Instantaneous frequencies on top of a vessel-like
structure. Histograms are shown for (b) instantaneous frequency, (c)
instantaneous amplitude, and (d) instantaneous frequency angle.

FIGURE A2. Conceptual AM-FM analysis for a round, dark lesion. (a)
Instantaneous frequencies on top of the lesion. Histograms are shown
for (b) instantaneous frequency, (c) instantaneous amplitude, and (d)
instantaneous frequency angle.
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The lesion is characterized by the IF, with large values at the
edge of the lesion and low values inside and outside the lesion,
as depicted in Figure A2a. Just as in the case of the vessels, the
resulting �IF� histogram has a clear peak for the high-frequency
values (Fig. A2b). The IA histogram contains two peaks: one for
the contrast changes in the background and one for the con-
trast changes on the edges of the lesion, as seen in Figure A2c.
This IA histogram is similar to the one for the vessel, but since
MAs are smaller than vessels, the number of pixels with high
contrast will be smaller, and therefore the histogram will have
a smaller peak that represents the MAs. Finally, one of the
biggest differences between vessels and MAs is seen on the IF
angle. In the ideal case of a perfect circular shape where all the

angles of the IF are represented (as seen in Fig. A2a), the
histogram for the angles is uniform (Fig. A2d), since all angles
of the IF are represented.

These two examples illustrate conceptually the way in
which AM-FM is obtains different signatures for each of the two
analyzed structures. Any structure of any shape, color, and size
can be characterized by combining the outputs of the three
estimates. We are conscious that retinal images present addi-
tional information such as noise or blurring that is not consid-
ered in the ideal cases presented here, but by using appropriate
statistical measurements to represent the AM-FM estimates,
high classification accuracy can be obtained, as shown by the
results presented in this article.
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